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Random fractals, phase transitions, and negative dimension spectra
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We introduce an exactly solvable model of a random fractal which, for any finite resolution of the
length scale /, exhibits a negative part of the dimension spectrum f(a) corresponding to the strongest
singularities of the probability measure with a=0. The right section of the spectrum, corresponding to
the regular part of the measure, is not well defined for / —0. These two effects are related to the fact that
the generalized dimensions 7(g) exhibit (1) a first-order phase transition at ¢ =1 and (2) a nonexistence of
the thermodynamic limit / —0, for ¢ <0. We show that an appropriate description of the scaling can be
obtained by considering the logarithm of the probability of picking a singularity a on the fractal. The
connections to fractal aggregates are briefly discussed.

PACS number(s): 64.60.Ht, 05.45.+b, 47.27.—1, 47.53.+n

Multifractal formalism has become a standard tool to
analyze phenomena observed in fractal aggregates, tur-
bulence, chaotic attractors, and so on [1-4]. A mul-
tifractal object is characterized by a whole range of criti-
cal exponents a, which are the singularity exponents of
the probability measure on the multifractal. Behind this
statement is a hypothesis of local scaling invariance in
each point of the set, since a changes from point to point.
Therefore, it is necessary to introduce a continuous spec-
trum f(a) interpreted as the dimensions of the subsets
S (a) of points which have the same a. The f(a) spec-
trum is related to the scaling exponents 7(g) of the mo-
ments of the probability measure, when the length scale
1 —0, by means of the Legendre transformation [1,2]:

7(q¢)=min[aqg —f(a)] . (1)

The standard example where all the analytic calculations
can be easily performed is the two-scale Cantor set, with
a fractal probability measure.

However, many fractals, such as diffusion-limited ag-
gregates (DLA’s), are described by random processes. It
is thus useful to introduce a simple model of random
fractals to illustrate what the differences with the corre-
sponding deterministic model are which is usually ana-
lyzed in the literature [2,4]. In particular, it is interesting
to note that in DLA’s, the regular part of the arrival
probability density (the harmonic measure [5]) for a
diffusing probe particle seems to vanish without a local
scaling because of the presence of fjords between the
branches of the aggregate. The corresponding right part
of the f(a) spectrum thus seems not be well defined and
this was interpreted in Ref. [6] as a “phase transition”
[7], an observation that was later elaborated in [8-15].
Our purpose is to show that such a result can be under-
stood in a random version of the paradigmatic two-scale
Cantor set.

In order to construct a deterministic Cantor set, we
should split the unit interval into two intervals, say, one
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of length /, and the other of length [/,, with [, +/, <1.
Each of the two intervals splits again into two new
daughter intervals covering a fraction /, and I, of the
mother, and so on, up to obtaining a dust of points. In
order to generate a fractal probability measure on the
Cantor set, one can assign a fraction of the probability p,
to one of the intervals and p,=1—p, to the other. At
the nth stage of the construction (n here is proportional
to —Inl), the local scaling invariance can be described by
the partition function [2]

n
Can=3p1/17 @
i=1
where the generalized dimensions 7(q) are obtained in the
thermodynamic limit n— o of the exponent 7,(q),
which is a solution of the equation

r,(g,r,)=1. (3)

For simplicity, consider a Cantor set, where each interval
has the same weight p; =27", so that the partition func-
tion can be factorized as

—A—n - n _kT” —(n—k)r
F,,(q,T,,)—Z quo lk}ll 12 !

:[(I;Tn +12"Tn )/24]71’ (4)

and at each stage of the construction 7(q) is given by the
solution of the equation /| "4/, "=29. The spectrum
f(a) can be computed by the Legendre transform of
7(q); for instance, using geometrical arguments [2].

Up to now, we have considered a regular fractal, in the
sense that it is constructed following a specific scheme of
refinement. By contrast, we want to introduce a Cantor
set, where the refinement changes from level to level. To
be specific, choose a point /; at random with uniform
probability in the interval [0, 1], and another point 1—1,
with uniform probability in the remaining interval [/},1].
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This defines a “regular” Cantor set by the iterations of
the fragmentation process, and we give again equal
weights 27" to each of the 2" intervals obtained at the nth
step. However, it is possible consider the ensemble of
realizations of these Cantor sets and look to the disorder
average [over the distribution of the random variables /,
and /, of the partition function (2)]

1—-1
<r"("’”)=fold"'1_—l7}‘fo AL (5)

and determine 7,(q) [and so f,(a)] by solving the equa-
tion (T, (g,7(¢)))=1.

On the other hand, it is easy to show that the general-
ized dimensions obtained by the averaged partition func-
tion [Eq. (5)] are the same obtained from a spatial average
of a Cantor set, where at each step of the fragmentation
an interval of length x splits into two intervals of random
length xI, and xI,, where /, , are random variables distri-
buted according to the distribution previously described.
This is, of course, the correct description for random
fractals. It is worth noting that in an experiment (e.g., on
fractal aggregates) one can often analyze only a single
realization of a random fractal. However, for large n, it
is expected to exhibit the average scaling by arguments
borrowed from the large deviation theory. In other ex-
periments, such as in turbulent flows, one can only ob-
serve the first level in a multiplicqtive process, corre-
sponding to n =2, and then ensemble averages at this lev-
el [16].

The explicit calculation of {T',(g,7)) is rather interest-
ing (see a similar result in [17]). The integral (5) does
diverge for 7,n = 1, while for 7,n < 1 one obtains

n
k

B(—7,(n—k)+1,—7,k+1)
(1—7,k) ’
(6)

where B (x,y) is the Euler beta function. The conver-
gence of the integral is thus assured by the condition

T,(g)=1/n , (7)

(r,)=27"3
k=0

so that lim,_,  7,(¢g)=7(q)<0. For instance, at n =1,
one has

27(q)=2—2"9—-V(279—-2)2—4(1—-2179) .

The corresponding f(a) is shown in Fig. 1, where one
sees that f,(0)=—1.

For n > 1, the equation (T",(g,7)) =1 is transcendental
and 7,(q) has no explicit form in terms of elementary
functions. However, we can give an analytic estimate for
n— oo, since in this limit the sum (5) can be approximat-
ed as an integral over the variable x =k /n €[0,1]. More-
over, using the Stirling formula for the Euler gamma
function to estimate the beta function, one has

(r, )z2_""foldx(—r,, 172
T
; n " (r, +1)S(x)n
x n
(—ran +D(—rxn+1) ¢ ’

(8)
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FIG. 1. f(a) versus a for n =1 (dotted line), n =35 (dashed
line) , n =10 (dotted line), and »n =100 (dashed line), obtained by
a Legendre transform of 7(q). The solid line is the convex en-
velope of the thermodynamic limit. The top of the spectrum is
the fractal dimension Dy(n).

with S (x)=— xInx —(1—x)In(1—x). Noting that S(x)
is a convex non-negative function, the asymptotic
behavior of the integral can be estimated by the saddle
point method. We have to consider three different cases:
i —1=71,%0,ie.,0=<¢g=<1; (i) r,<—1, ie, ¢g<0
(negative moments); (iii) 7, >0, i.e., ¢>1. In the first
case, the maximum of the argument of the exponential in
the integral (8) is reached at x* =1, where S (x) has its
maximum, so that the saddle point method gives for
0<¢g=<1

-7,

<I1>=(—‘r")1/2('-‘r,,n-l—lr;(—7',,n/2+l)
g Tt 1= ©)
and
T(q)=nli£r:°7n(q)=q—l for 0<¢g=<1. (10)

In particular, the fractal dimension of the random Can-
tor set is Dy=—7(0)=1, and the information dimension
(fractal dimension of the set of full probability measures)
D,=lim,_,,d7/dg=1. The corresponding part of the
f(a) spectrum is trivial since it collapses to the point
a=1, f=1. However, the convergence towards the
thermodynamic limit is extremely slow, as illustrated in
Fig. 2, where the fractal dimension [the top of the f(a)
spectrum] at the nth step of the construction D,(n), is
plotted versus n. It is worth stressing that at
n=1, D,=0.618. .. (the golden mean).

In case (ii) one obtains the negative moments, which
have a very interesting structure. For 7,+1<0, the ar-
gument is the exponential of the integral (8) has a max-
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FIG. 2. Fractal dimension Dy(n)= —r,(0) versus n for the

random Cantor set.

imum at the extrema of the integration interval, since
S(x) is a convex non-negative function and
S(0)=S(1)=0. These points correspond to the terms
k =0 and n in the original sum (6). As a consequence,
the integral (8) over the continuous variable x =k /n be-
comes a poor approximation of the sum (6), and we
should directly estimate (6). The simplest approximation
is to take into account only the first term (k =0) of (6),
i, 27™(1—7,n)"'. Note that it is much larger than
the last term (k=n), i.e., 27"(1—7,n)"% when n— .
We thus obtain

r,,(q)z——%(Z"""—l)—Do(n), for ¢ <0 . (11)

Here we have added an arbitrary constant term
7,(0)=—Dy(n) in order to get the correct limit g 0"
in the right hand side of (11). This shows that the ther-
modynamic limit of the function 7,(g) does not exist (is
infinite) for negative moments. Such a situation is not
pathological, as it is numerically observed in some ran-
dom fractals, such as DLA’s (see Refs. [14,15]). Roughly
speaking, it happens that there are regions of fractals (the
fjords in DLA) which have a probability measure that is
not (locally) scaling invariant because it is exponentially
small in length scale [6,8,9].

We can perform the Legendre transform of (11), which
gives the right part of the spectrum and reads

n[f,,(a)—Do(n)]z—1—:2—<1—1n1n2+1na)—1

fora>1. (12)

As a consequence, in a random fractal, even if the spec-
trum f (a) itself does not exist for @ > 1, one can consider
the probability P(a) of picking at random a singularity o
on the fractal
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N, (a) ~ fla
P(a)=—;v—~l fle)+Dy(n) , (13)

n

~fpla) . . .
where N,(a)~1 /2®) is the number of intervals with

singularity a at scale /=2"",and N, ~! Pot™ ¢ the total
number of intervals. The quantity InP(a) has a well
defined thermodynamic limit, as shown in Fig. 3, where
we plot n[f(a)—D,(n)] versus a. On the contrary, at
increasing n, the right part of f(a) has the typical para-
bolic shape which tends to the horizontal straight line
f(a)=1for a> 1, as shown in Fig. 1. Due to the rough
approximation of the sum (6) by its first term, we cannot
expect a quantitative agreement between formula (6) by
its first term, we cannot expect a quantitative agreement
between formula (12) and the direct numerical calcula-
tion. However, it is very evident that there is a scaling of
n[f(a)—Dy(n)] versus a instead of the usual scaling of
f(a) versus a, according the prediction of our asymptot-
ic estimate (12). This is probably a rather generic
phenomenon, since negative moments are dominated by
the most regular part of the measure, which in random
fractals is expected to be absolutely continuous with
respect to the Lebesgue measure.

Another peculiar characteristic of random fractals is
the presence of negative f,(a) which is interpreted as a
negative fractal dimension in a statistical sense, meaning
that it corresponds to events that occur exceptionally
rarely. Although it is possible to have a negative fractal
dimension or negative f (a) in fractals, in many cases this
could be a “spurious effect” of finite volume. In fact, we
can show that this is the case in our toy model. For g > 1
one has 7,(q) >0, and the convergence of the integral for
(T',) requires that 7,(q)</n. We should solve the
equation
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FIG. 3. n[f,(a)—Dy(n)] versus a, for a=1 and n=>5 (dia-
monds), 10 (crosses), 20 (stars), and 50 (squares). The results are
obtained by a numerical solution of Eq. (5), where the average
is over 2000 realizations.
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1 . 1

[ — . RS — 2“”q
(1—nt,) (1—nr,)?

<rn(q’7n)>=

=1. (14)

For large g, the convergence of (5) and the convexity of
T, assure that

lim 7,(¢)=1/n Vn . (15)
q—®
Moreover, the dominate term of the sum (14) is its last
term (a pole of the second order) so that for all values of
n and for q that are large enough, one has

T,,(q)z%[l—e_c”q] with C=InV2 . (16)

Its Legendre transform reads

% 1-InZ

nf,(a)~—1+ -

(17)

for a=a,,;,=0, since at large g, the moments are dom-
inated by the most singular part of the measure, which in
our model are very short intervals—points—with a=0.
Relation (17) shows that f,(a;,=0)= —1/n and the tail
of the left part of the spectrum is negative for all finite
n’s. It is worth stressing that in the thermodynamic limit
one has 7(g)=0 for ¢ > 1 and a first-order phase transi-
tion [6,7] in the “potential” 7(q) at the critical point
g =1. At this point there is a discontinuity in the first
derivative of 7 (a “latent heat”); that is, a jump in the
f(a) from the point a=1, f=1 [the Legendre transform
of 7(q)=q—1] to the point =0, f=0 [the Legendre
transform of 7(q)=0].

As for the negative moments, the function
InN,(a)=nf,(a) has a nontrivial thermodynamic limit,
which is the correct description of the negative fractal
dimensionalities f,(a) of the subsets with singularity a
which form the multifractal object.

In conclusion, we have discussed the simple model of a
random fractal, where all the intervals have the same
weight at each step of the construction. The multifractal
approach cannot be applied in the standard way because
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of two phenomena: the nonexistence of the thermo-
dynamic limit of the generalized dimensions 7(q) for neg-
ative ¢’s, and a first-order phase transition at g =1.
These behaviors are not mathematical pathologies but
could be present in real random fractals, such as
diffusion-limited aggregates. Moreover, we have shown
that a random fractal can have a spurious negative part
of the spectrum f(a), the fractal dimensions of the subset
with the strongest singularities of the probability mea-
sure, as a consequence of finite size effects. This could be
also observed in some physical phenomena such as ener-
gy dissipation in turbulent fluids, where negative f(a)’s
have been measured at rather poor resolution (large scal-
ing parameter /) [16,18]. In this case it is not clear
whether the negative spectrum disappears or not, and our
results introduce a good test to decide the issue.

Our most important result is that in these cases there is
a well-defined limit for the quantity related to the loga-
rithm of the probability of finding a local scaling ex-
ponent a,InP(a) versus a. A rather similar behavior was
already conjectured by Evertsz and Mandelbrot [15] in
the analysis of numerical data for DLA’s. It is interest-
ing that this type of quantity has a well defined asymptot-
ic limit not only for the negative moments but also for
describing the scaling property of the most singular (and
important) part of the probability measure on the random
Cantor set. In fact, the thermodynamic limit of the gen-
eralized dimensions, in a statistical mechanics language a
thermodynamic potential lim,_, . {InZ, ) /n, where n is
the particle number and Z, the partition function, is
trivially useless in both cases. On the other hand, the
relevant information on the scaling properties is obtained
by looking at a quantity of the type {InZ, ). Such as ex-
tension of multifractal formalism beyond its usual limits
of applicability could be a useful tool in many different
phenomena.
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Huber, Luciano Pietronero, and Willem v.d. Water.
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